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Practical calculations of the Aharonov-Bohm effect 

G N Afanasiev and V M Shilov 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow 
District, 141980 USSR 

Received 20 December 1988 

Abstract. We have found the scattering cross sections on two solenoids with opposite 
magnetic fluxes and on the toroidal solenoid in the presence or absence of a magnetic 
field. From this we extract the diffraction pattern shift which is due to the presence of the 
magnetic flux inside the solenoids. Practical recommendations for the performance of the 
experiments are given. It is proved that the crucial experiment on the existence of the AB 

effect suggested earlier could indeed be realised in practice. 

1. Introduction 

I t  is known that in multiconnected spaces non-equivalent representations of the angular 
momentum are permissible (see e.g. [ l ]  and many references in [2-51). Theory says 
that the Aharonov-Bohm ( A B )  effect exists for those representations to which single- 
valued wavefunctions correspond (see papers by Yang (pp 5-9), Aharonov (pp 10-19) 
in [2] and Ohnuki (pp 117-26) in [3]). Otherwise the effect does not exist [4]. The 
lack of theoretical justification for choosing one of these representations has recently 
given rise to numerous theoretical discussions (see e.g. [ 5 ] ) .  Due to this theoretical 
uncertainty experiments testing the existence of the A B  effect acquire decisive meaning. 
The shift of the diffraction pattern associated with the presence of the magnetic field 
was observed in experiments [6] in which electrons were scattered off a cylindrical 
solenoid. However, there are at least three factors which prevent unambiguous interpre- 
tation of these results. First, the finite length of the real cylindrical solenoid leads to 
magnetic field leakages near its ends. This allows one to attribute the positive outcomes 
of the above experiments to particle scattering on the magnetic field tails [7]. Another 
complication is due to the magnetic return flux of the cylindrical solenoid. It turns 
out [SI that the scattering cross section on this return flux exactly coincides with the 
A B  one [9]. Third, the long-range behaviour of the vector potential for the cylindrical 
solenoid makes a unique separation of the complete wavefunction into the incoming 
and scattered ones impossible. From this numerous paradoxes arise [lo]. 

More promising seem to be experiments in which electrons are scattered on magnetic 
field configurations lacking the above-mentioned shortcomings. The simplest magnetic 
fields of this kind are the magnetic field of the toroidal solenoid and that of two 
cylinders with opposite magnetic fluxes. In the experiments of Tonomura et al [ l l ]  
electrons were scattered on the almost impenetrable toroidal potential barrier with a 
toroidal solenoid inside it. The shift of the diffraction pattern has been observed when 
the magnetic flux inside this solenoid was present. There exists the following qualitative 
interpretation of this shift. Consider two points P and P'. Continue the wavefunction 
from P to P' along different paths 1 and 2. The wavefunction gets different phase 
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factors if inside the combined contour composed of paths 1 and  2 there is a non- 
vanishing magnetic flux. This is inconsistent with the single-valuedness of the 
wavefunction (which we suppose always to be fulfilled). Particular terms of the sum 
occurring in Feynman path-integral approach indeed acquire these factors. But this 
method itself, applied to the scattering in multiconnected regions, meets [ 121 with the 
ambiguities mentioned at the beginning of this section. Finally, we note that there is 
no known path-integral formulation for the toroidal solenoid. 

We should like to mention [13, 141 in which the scattering amplitude fm on the 
magnetic field ( H  = rot A = 0, but A # 0) surrounding the toroidal solenoid (we call it 
the magnetic scattering amplitude or  MSA for brevity) was obtained in the framework 
of Fraunhofer diffraction theory. The measured cross section is, however, determined 
by the absolute square of the total scattering amplitude f :  The latter is the sum of the 
scattering amplitude f O  on the impenetrable potential barrier surrounding the solenoid 
and  the magnetic scattering amplitude fm : f = f O + f m .  The easiest way to check this is 
to write out the Lippmann-Schwinger equation in a form appropriate for the treated 
problem. This was done in [14]. 

Thus we intend to calculate the scattering cross section on the potential barrier 
without magnetic field (go= l f o 1 2 )  and with it ( U =  I f o + f m i ' ) ,  find from them the 
diffraction pattern shift and  compare it with the experimental one. The plan of our 
exposition is as'follows. In sections 2 and  3 we apply the Fraunhofer diffraction theory 
to the evaluation of the electron cross sections on a toroidal solenoid and on two 
cylindrical solenoids with opposite magnetic fluxes. In section 4 we analyse the 
obtained diffraction patterns in detail, find the positions of maxima and  minima of 
the cross sections and their shift arising from the magnetic field switching. We analyse 
under what conditions the experiment on existence of the A B  effect proposed recently 
in [ 151 could be realised. The calculations presented justify theoretical predictions 
according to which the hidden fields (such as the magnetic field inside the solenoid) 
may lead to the disappearance of the probability and  current densities in the accessible 
space regions. Turning to the experiments of Tonomura er a1 we find that Fraunhofer 
diffraction describes them only quantitatively. The quantitative description is obtained 
in the framework of Fresnel diffraction theory. We apply this to the electron scattering 
on two cylindrical solenoids with opposite magnetic fluxes. Complications arising in 
interpreting the observable cross sections are discussed and practical recommendations 
on the performance of the experiment are given. 

As far as we know, the present calculations are the first realistic ones which treat 
the A B  effect quantitatively, thus permitting a direct comparison with experimental 
data. The wavefunctions used are always single-valued both in the presence or  absence 
of the magnetic field, in simple or multiconnected regions. 

2. Scattering in the absence of the magnetic field 

Consider the impenetrable cylinder of the radius R with its axis coinciding with the 
2 axis. For the scattering wavefunction (the initial wavevector is along the x axis) 
one has the following familiar equations: 

rLO = expiikx) + 48 

cos mq. JmikR?  
m=O H',:'(kR) 

X 

*:=-2 2 E ,  i"Hk:'(kp) 
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Here E ,  = (1 + 8,.o)-’; p and cp are the usual polar coordinates (x = p cos cp, y = p sin cp); 
J,,, and fZz) are Bessel and  Hankel functions. 

From the asymptotic behaviour of 4: (-( l/vT).L,(cp)) we find the scattering 
amplitude: 

For k R  << 1, equations (2.1) and (2.2) transform into 

( 2 . 2 )  

( C  is Euler’s constant =OS77 . . .). For high energies the sums (2.1) and (2.2) contain 
many oscillating terms. In this case the Kirchoff approximation [16] turns out to be 
appropriate. Using it we obtain 

For large values of kp 

(2.4) 

(2.5) 

With p and R fixed, the integrand in (2.5) oscillates rapidly as k +  W. For lyl< R the 
main contribution to the integral is due to the stationary point ( y ’ = y ) .  The use of 
the stationary phase method gives 

4;- -exp(ikx) k + m ,  ( y (  < R, x > 0. (2.6) 

Substituting this into (2.1) we get $0 i= 0, which corresponds to the geometrical shadow 
behind the cylinder. For p >> R it follows from (2.5) that 

I / ?  R 

4 : ~ - - ~ ( ~ )  4 r i k p  ( l+coscp)  (2.7) 

I f  p is so large that not only k p  >> 1 and p >> R but also kR’/p << 1 (Fraunhofer 
diffraction), then $: could be presented as a product of the outgoing wave and the 
scattering amplitude (which is a function of the angle solely) 

In the same way one obtains the scattering cross sections for two impenetrable cyclinders 
of radius R (with their axis passing through point * d  of the y axis and the initial 
wavevector along the x axis (see figure 1) ) :  

I‘ sin( kR sin cp)cos( kd sin c p )  (2.9) 
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- 
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Figure 1. Electron scattering on  two cylindrical solenoids with 4, = -b2 (dark circles) 
embedded into the impenetrable cylinders (hatched circles= arrows show the direction 
of the initial wavevector. 9 is the scattering angle, p = >  x 2 + ~ ’ .  

and for the impenetrable torus (the initial wavevector along the z axis (see figure 2 ) ) :  

- ( d  - R ) J , [  k (  d - R )  sin 
(2.10) 

The Kirchoff method works well if the ratio r of the scatterer dimension to the 
wavelength is much larger than 1 [16]. The fields obtained by this method differ from 
the exact ones only in the closest vicinity of the scatterer. The numerical investigation 
[17] shows that the Kirchoff method has a much broader range of applicability: it 
works if the above ratio only slightly exceeds unity ( r  3 2-3). In typical experiments 
with a single cylinder [6] one has: E (electron energy) = 20 keV and R = cm. This 
gives kR 5 lo6. The same situation holds for the experiments of Tonomura er a1 [ l l ]  
with the toroidal solenoid. These estimates show that the Kirchoff method is suitable 
for the description of the experiments under consideration. 

Figure 2. The electron scattering on the toroidal solenoid (darkened) surrounded by the 
impenetrable torus (hatched); 0 is the scattering angle. 
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3. Scattering in the presence of the magnetic field 

3.1. Single cylindrical solenoid 

Let the solenoids which produce the magnetic flux 4 be installed inside the cylinders 
and torus treated in the previous section. Consider first the usual single-solenoid case. 
The wavefunction describing the particle scattering is 

* y  = $ L B +  (LT y = e 4 1  hc. (3.1) 

Here $iB describes the scattering on the point non-screened solenoid [9]: 

(clLB= f exp[i.rr(/ml--;lm - yl) ] .Jm-y (kp) exp(imcp). (3.2) 
m=--3: 

(L: takes into account the shielding and finite dimensions of the solenoid 

The asymptotics of (LT is trivial 

(3.3) 

The asymptotics of $iB is rather subtle. In a closed form valid for all angles it was 
first obtained in [18]: 

sin .rry exp(icp12) exp(ikp) 
4 i B = e x p ( i k x )  exp[iy(cp - .rr)]+i (3.5) (1 - 2rr ikp sin’( cp/2))”? ’ 

The case y = t is of particular interest: 

*l/2 = *Y: + *:/2 

It follows from (3.6) that +hll2 = $A’: = $f” = fi12 = 0 on the positive semi-axis x (cp = 0). 
For y = f and small values of kR 

cp 
2 

kRH‘i>:(kp) sin - 

.fl;2=2(-$)”2exp[i(~+~)]kR sin?.  cp 
(3.7) 
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3.2. The unusual direction of the initial wavevector 

Let be a wavefunction corresponding to scattering on an  impenetrable cylinder of 
radius R with zero magnetic flux inside it and  an  impenetrable wall extending from 
x = R to x =cc (incoming particles move along the negative x semi-axis towards the 
origin (see figure 3)). Then, we have the following relation [15]: 

This means that for y = i  the presence of the magnetic flux inside the solenoid is 
equivalent ( u p  to a phase factor) to the introduction of the impenetrable well. Equations 
similar to (3.8) are valid also for two solenoids with r$l = -42 and for the toroidal 
solenoid. For the initial wavevector directed along the x axis the impenetrable wall 
coincides with the part of the Y = 0 plane lying between two solenoids (figure 4) and 
with the part of the Z = 0 plane coinciding with the torus hole (figure 5). For a n  
infinitely thin non-shielded solenoid the relations similar to (3.8) have been obtained 
in [9, 19,201. It follows from (3.8) that for y =: the wavefunctions (as well as 
probability and  current densities) vanish in places where those impenetrable walls are 
situated for y = 0 (and  which in fact are absent for y = f ) .  This means that the counting 
rate of particle detectors installed there ( D  in figure 3, D ,  in figures 4 and 5) drops 
to zero for y = 4. On the other hand, the counting rate of the detectors D2 installed 
on the x axis after two solenoids with 4I = -& (figure 4) and after the toridal solenoid 
(figure 5 )  is practically the same for y = 0 and y = i. This is essentially the idea of the 
experiment proposed in [15] for testing the A B  effect. It is remarkable that the sole 
existence of the magnetic flux in the inaccessible region pushes out the probability 
and  current densities from the available space regions. 

Figure 3. The cylindrical solenoid (dark circle) is embedded into the impenetrable cylinder 
(hatched one). For the incoming wavevector along the x axis and y =  e d / h c = f  the 
wavefunction vanishes on the x axis behind the solenoid. 

Figure 4. Two cylindrical solenoids with 6, = -d2 = d (dark circles) are surrounded by 
the impenetrable cylinders (hatched ones). The incoming wavevector is along the x axis. 
For y = ed/ hc = 4 the wavefunction vanishes on the part of the axis lying between the two 
cylinders. 
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Figure 5. The toroidal solenoid (black) is embedded into the impenetrable torus (hatched). 
For the initial wavevector along the x axis and y = f ,  the wavefunction disappears on the 
part of the z = 0 plane coinciding with the torus hole. 

3.3. Two c.ylindrica1 solenoids and the toroidal solenoid 

For two cylindrical solenoids with r,bl = -c$~ = 4 (figure 1 )  the magnetic scattering 
amplitude equals [21] 

1 +cos q 
sin[k(d - R)sin cp] 

sin cp 

in the first Born approximation, 

2 l 2  sin[k(d - R )  sin cp] f:"= -(-) [1 - e x p ( I i r y ) l  
r i k  sin cp 

(3.9) 

(3.10) 

in the high-energy approximation and 

(3.11) 
1 +cos cp 

sin[ k (  d - R ) sin cp] 
1 f,n=---- [ 1 - exp( Ziry)]  m sin cp 

in the Dirac phase factor approximation [22]. 
For the toroidal solenoid (figure 2) the corresponding magnetic amplitudes are [ 141 

1 +cos e 
sin e f; = .iry ( d - R ) ~ J , [ k ( d  - R )  sin e] 

1 1 +cos e f: =; [ l  - exp(2 i ry ) ] (d  - R )  ~ J , [ k ( d  -R)sin e]. 
sin 19 

(3.12) 

(3.13) 

(3.14) 

For the infinitely thin toroidal solenoids the amplitudes (3.12) and (3.13) have been 
obtained in [13]. 

The conditions for the validity of these equations are well known. The first Born 
approximation works if the magnetic flux inside the solenoids is sufficiently small 
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(exactly, y<< 1). The high-energy approximation holds if the following conditions are 
satisfied (see, e.g., [23]). First, the kinetic energy of the scattered particle should 
considerably exceed the potential one. In the problem treated this means 

h'k' h' 2ek 
2m 2m hc 

->>- - / A : / ,  

Here, m and  k are the mass of the scattered particle and its wavenumber, A: is the z 
component of the vector potential. Taking for lAL/ its maximal value ( = 4 / 2 r R ,  see 
[24]) we obtain kR >> 2 y. In the experiments of Tonomura et a1 kR = 2 x lo6 and y = 5. 
So the first condition for the validity of the high-energy approximation is satisfied. 
The second condition for its validity is as follows: / z /  << k ( r ) ? .  Here, 2 is the distance 
from the scatterer in the z direction (coinciding with the direction of the wavevector); 
( r )  is the average dimension of the region inside which the potential energy essentially 
differs from zero. If ( r )  and  k are equal to the parameter d ("4 cm) of the 
Tonomura solenoids ( i p  - d) '+  z z =  R 2 )  and to the wavenumber used in the discussed 
experiments ( = 2 x 10"' cm-I), then / z /  << 32 m. So the second condition is also satisfied. 
The validity range of the Dirac phase factor approximation is somewhat uncertain. 
According to Berry [22] it holds 'if in a particular angular region only two whirling 
waves are appreciable'. We observe that this approximation is a suitable interpolation 
between the 1st Born and high-energy approximations (it coincides with the former 
for small values of y and  with the latter for small scattering angles). For this reason 
and for definiteness in the following we shall use the magnetic amplitudes f:. 

3.4. Total scattering amplitudes and  cross sections 

The total scattering amplitude on the solenoid surrounded by an impenetrable barrier 
consists of the scattering amplitude fo in the absence of the magnetic field (see section 
2) and of the magnetic scattering amplitude f m .  As a result, the following expressions 
are obtained for the total scattering amplitudes and cross sections 

1 l + C O S c p  
{ s i n [ k ( d + R )  sin cpI-exp(2iry) sin[k(d - R )  sin cp]} (3.15) fz'C=-m sincp 

2 l + C O S c p  - 
r k  sin cp 

u2' = - ( )'[sin2( kd sin cp) cos2( kR sin cp) sin' r y  

+sin'( kR sin cp )cosz( kd sin cp )cos2 r y ]  

for two cylindrical solenoids ( d ,  = --& = 4 )  and 

- e x p ( 2 i r y ) ( d  - R ) J , [ k ( d  - R )  sin e]} 

(3.16) 

(3.17) 

x J , [ k ( d +  R )  sin B]J,[k(d - R )  sin e] (3.18) 
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for the toroidal solenoid. Here 
interesting: 

is defined by (2.10). The case y = f is particularly 

2 1+cos  cp &C _ _  
r k  sin cp 

U;;?=-  :(‘:iri ~ ‘ ) ’ i (d+R)J , [k id+R)s in  e ]  

sin( kd sin cp) cos( kR sin cp 1 1 2 -  [ (3.19) 

+ ( d - R ) J , [ k ( d - R ) s i n  O]}’. (3.20) 

4. The experimental consequences 

4.1. One cylindrical solenoid 

Now we discuss the observable consequences of the considerations developed in the 
last two sections. At first, we elucidate the conditions for which the gedanken experi- 
ment mentioned in section 3.2 could be realised. We take one cylindrical solenoid as 
an  example. Comparing (2.3) with (3.7) we note that a maximal distinction of the 
wavefunctions for y = 0 and y = 5 takes place for small kR. For finite values of kR 
and  kp +CO the cross section oscillates with period r/ kR (see (2.8)). The oscillation 
amplitude is particularly large for small angles. The introduction of the impenetrable 
wall (this is equivalent to switching on the magnetic flux inside the solenoid with y = 4) 
changes the diffraction pattern. But an  essential decreasing of the wavefunction takes 
place in the nearest vicinity of the positive x semiaxis. Now we evaluate / $ I 2  behind 
the solenoid for the intermediate values of kR and kp. For this we compute the 
wavefunction defined by (2.1) and (3.6). In figures 6 and 7 we present numerical 
results for kR = 1 and kR = 10 for different values of kp. For convenicnce, l$,,2(p, cp)l ’  

kp .50  
k p = l O  

1 -  

k p . 5  

lo” - 

r 

10-2 - 

10” 
0 5 10 15 20 

n 

Figure 6 .  Illustration of the magnetic field influence on the particle probability in the 
shadow region. O n  the vertical axis the ratio r = ilL, ? ( p ,  q) / lLo(p .  q = 0)l’ is presented. q 
is expressed through the number n (presented on the horizontal axis)  as  follows: q = 
[ ( n  - l ) / Z l ]  s i n - ’ R / p .  The value of k R  = 1. 
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10 t 

20 10 15 
10-21 1 '  " I '  " ' 1  " " ' ' " ' 

0 5 
n 

Figure 7. The same as in figure 6 but for k R  = 10. 

is related to the absolute square of the wavefunction in the absence of the magnetic 
field taken on the x axis for the same value of p. Thus, on the vertical axis the ratio 
r = l ~ J , , ~ ( p ,  9 ) / I J 0 ( p ,  9 = 0)l' is presented. On the horizontal axis, the number n is 
given, to which the angle 9 = ( ( n  - 1)/21) sin-' R / p  ( n  = 1,. . . , ? 1 )  corresponds. (For  
definiteness the shadow region ( O S  191 s sin-' R / p )  was divided into 40 equal parts. 
As absolute values of the wavefunction for y = 0 and  y = 4 are even functions of 9, it 
is enough to evaluate lI,!12 only for positive angles.) From figures 6 and 7 we see that 
an  increasing wavenumber leads to the appearance of oscillations and  to the narrowing 
of the region with small lI,!,,212. For very large values of kR and k p  occurring in 
experiments [6] the region behind the solenoid is in shadow. The wavefunction is 
extremely small there. The introduction of the impenetrable wall extending from x = R 
to x = CC (this is equivalent to the creation of the magnetic flux with y = inside the 
solenoid) does not change anything. At first glance it seems that in these circumstances 
the realisation of the experiments mentioned in section 3.2 is useless. This is not the 
case. The reason is that in these experiments negatively charged electrostatic systems 
(so-called biprisms) are used, deflecting electrons towards the x axis. Effectively this is 
equivalent to reduction of the wavenumber. As a result the diffraction pattern reappears 
in the shadow region. If biprisms are situated symmetrically relative to the x axis and  
carry the same negative potential, the wavefunction for y = 4 vanishes as before on the 
x axis. This could be verified experimentally. 

4.2. Two impenetrable solenoids 

Now we discuss the experimental consequences of the electron scattering on two 
impenetrable solenoids with = -& (figure 1). It follows from (2.9) that in the 
absence of the magnetic field the scattering cross section has two families of zeros at  
angles defined by 
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or, if n is not too large, 

On the other hand, for y = 4 

(4.3) 

Comparing (4.2) with (4.3) we conclude that the magnetic field shifts zeros of the cross 
section on rr/2kR (for the first family) and  on 7r/2kd (for the second family). In the 
experiments one does not see zeros of the cross section but its maxima. In figure 8 
we present the cross sections evaluated for the following parameter: k = 2 x 10'" cm-', 
R = cm. On the horizontal axis the scattering angle is presented. 
The origin corresponds to the angle cp = 0.01". The numbers on this axis correspond 
to the excess over 0.01" in units of deg. For example, number 5 corresponds to 
the angle (10-'+5x lo-')". The cross sections given by (3.16) are presented on the 
vertical axis. The full, broken and dotted curves correspond to y = 0, 0.5 and 0.25, 
respectively. We observe that positions of maxima are rather irregular. For instance, 
the maximum of U$? does not always occur between two successive maxima of vic. 
To clarify this we present in the upper part of figure 9 the positions and  magnitudes 
of maxima both for y = 0 and  y = i. 

cm, d = 5 x 

lo - ' [  " " 1 '  " " ' " ' 1 .  
0 5 10 15 

'p 

Figure 8. The electron cross section on tv,o solenoids with d, = - $ ? .  On the horizontal 
axis the origin corresponds to q = 0.01'. The numbers on it are the excess over 0.01" in 
units of IO-'deg. For example, number 5 corresponds to the angle (0.01 )I 5 x lo-')". In  
Fraunhofer diffraction theory curies I ,  2 and 3 correspond to y = 0 ,  0.5 and 0.25. The 
situation changes drasticall) if one uses Fresnel diffraction theory. If p (distance from the 
origin to the point of measurement (see figure 1 ) )  equals 106.1 cm, then Fresnel theory 
exactl) reproduces the Fraunhofer cross sections with the same values of y. I f  p = 91 cm, 
then curves 1, 2 and 3 correspond to y = 0.5, 0 and 0.25. For p = 98 cm the cases y = 0 
and y = 0.5 are described b> the same cu r i e  3. 
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10 0 1 

n 10 n 

Figure 9. The positions and values of the cross section maxima for IWO cylinders with 
d, = -& (upper part) and for the toroidal solenoid (the lower one). The full vertical lines 
correspond to y = 0, the broken ones to y = 0.5. 

4.3. The toroidal solenoid 

Now we consider the electron scattering on the toroidal solenoid. Because for real 
experiments (which will be discussed below) kd >> 1 and kR >> 1 in (2.10), (3.18) and 
(3.20) for angles not too small one may, instead of the Bessel functions, use their 
asymptotic values: 

1 ( i + c o s  e)’ {m sin[ k ( d  + R )  sin 0 - ( i r / 4 ) ]  
2irk sin’ 0 

- sin[ k(  d - R )  sin 8 - ( i r /4) ) ’  

{m s in [k (d  + R )  sin e 1  COS e)’ 
UTi2 = - 

2 7 ~ k  sin’ 0 

- (71./4)]- sin[ k ( d  - R )  sin 8 - ( ~ / 4 ) ] } ~  

(4 .4)  

(4 .5 )  

If, in addition, R << d then one may disregard R under the square root but not inside 
sin or cos (as kR >> 1): 

2d 1 
irk sin’ e *;:=-- [(1+ cos 0 )  sin( kR sin e )  cos( kd sin f3 - ( ~ / 4 ) ] ’  

[ (  1 +cos e )  cos( kR sin 0 )  sin( kd sin 0 - ( 7 ~ / 4 ) ] ~ .  
2d 1 
irk sin’ 0 

U:,.> = - - 

Just as for two cylinders, one has two families of zeros: 

@ ( R I , -  nir 
,, kR 

(4 .6 )  

(4 .7 )  
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When the magnetic field is switched on, the zeros of the first and second families shift 
on ABR = ~ / 2 k R  and Aed = ~ / 2 k d ,  respectively. The excellent experiments of 
Tonomura et a1 [ l l ]  were performed with the following parameters: E (electron 
energy) = 150 keV, R = cm. Then k = 2 x 10I0cm--’, kR = 2 x lo6, 
kd = 8 x lo6. This gives A O R  = 8 x lo-’ and ABd = 2 x lo-’. The shift of the diffraction 
maxima was observed in the plane normal to the wavevector of the incoming wave 
(i.e. in the plane z = constant, figure 2 ) .  Unfortunately the authors [ 111 did not indicate 
the distance from the toroidal solenoid to the plane where the diffraction pattern was 
observed. From the drawing of the installation presented in [ l l ]  we estimate this 
distance to be equal approximately to 1 m. Then for the shift of zeros one obtains 
AzR = rAOR ~ 0 . 8  p m ,  Az,, = rAOd = 0.2 p m .  Shifts of the same order were observed in 
[ l l ] .  The typical angular dependence of the cross sections defined by (2.10) and (3.20) 
is shown in figure 10. The positions and values of maxima are shown in the lower 
part of figure 9. 

cm, d = 4 x  

10-61 , . , , I , , , , , , , , , 
0 5 10 ‘5 

e 
Figure IO. The electron cross sections on the toroidal solenoid. The cases y = 0 and y = 0.5 
are shown by the ful l  and broken curves, respectively. 

4.4. Scattering cross sections 

The presentation of the scattered wave as a product of the outgoing wave 
( = e x p ( i k p ) / G  for the two-dimensional case and exp(ikr)/ r for the three-dimensional 
one) and the term depending only on angles is valid for sufficiently large distances from 
the scatterer. In addition to the conditions kr >> 1 and R / r < <  1 (which we always assume 
to be satisfied), the relation kR’/r<< r should be fulfilled for the scattering on single 
cylinder, and the relation kdR/ r << H for scattering on two cylinders and on the torus. 
In optics the scattering under these conditions is called Fraunhofer diffraction. In the 
experiments performed with single solenoid [6] one has kR’/r = 5 .  In the experiments 
of Tonomura et a1 kdR/r  = 8 ( i f  r is chosen to be equal to 1 m).  As the conditions 
for the validity of the Fraunhofer diffraction are violated, the results of sections 4.2 
and 4.3 are of a qualitative nature. To obtain quantitative results we should retain 
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under the exponential in (2 .7)  the quadratic terms and  disregard the cubic ones which 
are small (in fact, for one cylinder kR'/pZ = 3 x lo-'; for the torus kdR2/r2  = 8 x 
In optical language this is called Fresnel diffraction. We illustrate how the previous 
results are changed using electron scattering on two cylindrical solenoids with 6, = -& 
as an  example. I f  the above conditions (kd  >> 1, p >> d, kdR2/p2<< 1)  are satisfied, then 
the wavefunction equals 

4 = exp(ikx) + $s (4.10) 

1 l + C O S c p  * =-- exp[ikp(l-$ tan2 cp)](A+iB). 
2 x 5  cos q 

(4.11) 

Here we put 

A = C, + C, -cos 2 x y (  C2+ C,) +sin 2 x y ( S 2 +  S,) 

B=S ,+S , -cos2xy(S2+S , ) - s in2ny(C~+C, )  

c, = C(P,) s, = S(P , )  i =  1 , .  . . , 4  

P I = ( ? )  ''* (-coscp+tanq) d + R  p 2 = ( ? )  ' I 2  (-coscp+tanq d - R  
P P 

d - R  112 

P P 

C ( x )  and  S ( x )  are the usual Fresnel integrals 

C ( x )  = 1; COS( $) d x  S(x) = 1; sin($) dx. 

For ltan cpl >> (d + R) /p ,  equation (4.1 1) is simplified: 

sin[ k(  d + R )  sin cp] 
( d + R ) '  

l+Coscp[exp( ik  2P 
f,(P, cp) = -- V"Z2 sin cp 

sin[ k(  d - R )  sin cp] 

I f  the measuring device is outside the incoming electron beam ( D ,  , figure 11 1, then 
1 f ,12 coincides up  to terms of the order [(d + R)/p] '  with the particle flux through the 
cylindrical surface of the radius p and may be viewed as an analogue of the scattering 
cross section for the finite distances from the scatterer 

2 l+coscp  
irk sin cp 

G F ( p ,  cp) =- ( )'[ sin'(kd sin cp) cos2(kR sin cp) sin' 

+sin'( kR sin cp) cos2( kd sin cp) cos' (4.13) 
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Figure 11. The detecors D, and D2 in different physical conditions. Although D, is in the 
incoming beam, its position is more suitable for the detection of the diffraction pattern shift. 

Obviously, 6: transforms into U: defined by (3.16) in the limit p + x .  The cases 
y = 0 and  y = 4 are of particular interest 

-" =L ( '+'Os ')*[ sin'(kd sin cp)  cos2( kR sin cp)sin' 
n k  sin cp 

U 0  

+ sin2( kR sin cp) cos2( kd sin cp)cos' - cos- cp 
(k: ' 11 

2 l + C O S c p  

n k  sin cp c?.f:', = - ( )'[ sin'(kd sin cp) cos2( kR sin cp) 

+sin'( kR sin cp)  cos2( kd sin cp ) sin' (k; - cos2 $4. 

(4.14) 

(4.15) 

Curious complications arise when one tries to interpret the measurements performed 
at finite distances from the solenoids in terms of the Fraunhofer cross sections (2.9), 
(2.10), (3.19) and (3.20). We illustrate this using two solenoids with 4, = -4? as a n  
example. Usually [6, 111 the experimenters consider a limited number of diffraction 
maxima and observe their shift when the magnetic field is switched on. For definiteness 
let the number of the observed maxima equal 10. If the parameters k, R and  d are 
the same as in the experiments of Tonomura er a1 on the toroidal solenoid, these 
maxima occupy the angular range (see (4.2) and (4.3)) equal to 1On/ kd = 2 x 
Let the measurements be performed in the neighbourhood of the angle cpo. As 
k d R / p = 8  for p =  1 m, then in (4.13)-(4.15) one may replace cp by cpo in 
s in( (kdR/p)  cos' cp - ny) and cos( (kdR/p)  cos' cp - r y ) .  This substitution is invalid 
in kR sin cp and kd sin cp as (in view of kR >> 1 and kd >> 1) they vary considerably at 
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the angle interval lO.rr/kd. Then, instead of (4.13) one has 

kdR 
+sin'( kR sin cp cos2( kd sin Q )  cos'(w - ~ y ) ]  o=-cos Q o .  

P 
(4.16) 

Consider the particular cases ( y = 0, 4) of (4.16): 

2 l+COScp - 
.rrk sin cp 

6ic=- ( . )'[sin'(kd sin Q )  cos'(kR sin Q )  sin' w 

+ sin2( kR sin cp) cos2( kd sin cp) cos2 w ]  (4.17) 

62c- 2 1+COS Q ' = ( sin 
) [sin? kd sin cp) cosz( kR sin Q )  cos' w 

+ sin2( kR sin cp) cosz( kd sin cp) sin' w ] .  (4.18) 

Let w be equal to n r .  Then 6;' =U;', Gi', Gf:,= u:;~ and the formulae of the 
Fraunhofer diffraction correctly described the diffraction pattern both in the presence 
and absence of the magnetic field. Now let w = ( n  +i).n. Then, 1 / 2 9  and 
$c2 = cric. This means that an observer having measured the cross section for y = 
finds that it agrees perfectly with the Fraunhofer cross section in the absence of the 
magnetic field. On these grounds we deny the existence of the A B  effect. One may 
argue that a real experimenter would not use the theoretical formulae (2.9) and (3.19). 
He would simply measure the diffraction patterns for y = 0 and y = i. Their distinction 
he would attribute to the existence of the A B  effect. But let p = po and cpo in (4.17) and 
(4.18) be such that w = ( n + a ) r .  Then G.fy2=6i'. This means that measurements 
performed at p = po and Q = Q,, give the same diffraction pattern for y = 0 and y = i. 
To illustrate this we again turn to figure 8. We mentioned earlier that the Fraunhofer 
cross sections presented there describe the experimental situation only qualitatively. 
Using the formulae of Fresnel diffraction theory and choosing p = 106.1 cm ( w  - 3 ~ )  
we exactly reproduce the Fraunhofer cross sections 1, 2 and 3 with y = 0; 0.5 and 0.25, 
respectively. Let p = 90.95 cm ( w  = 3.5 7 ) .  Then, curves 1 and 2 correspond to y = 0.5 
and y = 0, respectively. Curve 3 corresponds to the same y (=0.25). Finally, for 
p = 98 cm ( w  = 3 . 2 5 ~ )  the values of y = 0 and y = 4 are described by the same curve 
3. As a result, one should be very cautious when interpreting the results of electron 
scattering on solenoids. It may happen that two observers having installed their 
detectors at different distances from the solenoid would come to different conclusions 
on the existence of the A B  effect (one observer would see the shift of the diffraction 
pattern while the other would not). For two solenoids with 4 ,  = -& the second 
observer should shift its detector in the radial direction by the value Ap = 
p [ - 1  + (4kdR/npo)  cos' cpJ' in order to obtain the correct (in the sense of the intuitive 
Fraunhofer theory) value of the diffraction pattern shift. 

Formulae (4.12)-(4.18) are valid if the angle at which the measurement is performed 
is sufficiently large ( / tan cpI >> ( d  + R ) / p ) .  For small angles (Itan c p l <  (d - R ) / p )  the 
detector ( D 2 ,  figure 11) is in the initial beam. In this situation the cross section is not 
equal to the absolute square of the coefficient at the outgoing wave. According to 
general rules of quantum mechanics [ 2 5 ] ,  it is proportional to the radial component 
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of the probability current through the cylindrical surface of the radius p :  a = mp/ hkj , ,  
h e 

j = - (4 grad 4 - 4 grad 4) -- A 44. 
2i m mc 

(4.19) 

Here 4 is a complete wavefunction defined by (4.10). Substituting into (4.19) and 
disregarding the terms of the orders d 2 / p 2  and d / (  kp’))’  ’ one obtains in the angular 
region treated (0 s cp < ( d  - R ) / p )  

( l + C O S  ( A  cos A +  B sin 3 )  
2tO cos cp 

( A  cos A +  B sin A )  . 

(4.20) 
I 1 l + C O S c p  - 1 +cos cp 

fick cos cp a c o s  cp -2 [ 1 +i ( ) ’ (A :+  B’) - 

Here A and B are defined in (4.11) and 

For small values of cp the quantity cos cp - 1 +$tan’ cp equals 9cp4/24. Taking for cp its 
maximal value ( cpo = ( d - R j /p = 4 x we get kp( cos cp - 1 + $ tan’ q ) c 3 x l o -” .  
So we may put A = x / 4 .  Now estimate the contribution to the probability current from 
the term proportional to the vector potential. For two solenoids with 4I = -& with 
the axes passing through the points y =  * d the radial component of A equals 

A =  kp(cos cp - 1 +$tan‘cp)+ n/4 .  

+d cos cp 
A,, = 

In the treated case p >> d, thus A,, = (bd cos c p j r p ’  and 
eP 2d 
- A,  L- p y 7 ~ -  p y  x 5 x lo-’’. 
hck kP - 

Choose for y = e(b/ hc the same value as in the experiments of Tonomura et a1 ( y L- 5 ) .  
Then, the contribution of the vector potential can be disregarded. As a result, a turns 
out to be proportional to 141’: 

ff = PI*/’ 
II,!~’ = 1 + $ ( A 2 +  B’j - A -  B. (4.21) 

In  figures 12-14 the angular dependence of 141’ is shown for three different distances 
( p  = 106.1; 90.95; 97.94) in the interval - c p 0  < cp < cpo, po = ( d  - R ) / p .  What can we 
learn from these figures? First, there are no indeterminacies which are due to the 
coincidence of the cross sections for y = 0 and y = $ (see section 4.5). Second, the 
maximal deviation of II,!l2 from its plane-wave value (equal to 1 )  is about 70%. The 
lI,!12 maxima for y = f are well separated from those for y = 0 and this could be observed 
experimentally. The fall of 141’ in the right-hand sides of figures 12-14 is due to the 
proximity of the shadow region. I n  figure 15 we present the positions and values of 
1 + 1 2  maxima in the treated angular region. 

I n  deriving (4.20) we have assumed that a detector situated in the incoming wave 
( D 2 ,  figure 1 1 )  could not distinguish the scattered particles from those of the initial 
beam. If the detector is constructed in such a way that it registers only scattered 
particles (probably a sort of colimator has been provided), then one should use in 
(4.19) the scattered wave CL, (see 4.1 j instead of 4. This results in 

c = i p (  1 +cos  p ) ‘ (A ’+  B’j( 1 -=A, , )  e 
cos * (4.22) 
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Figure 12. The probability density for electron scattering on two solenoids with 6, = -6.. 
The distance p from origin to the detector ( D 2 ,  figure 11) is taken to be 106.1 cm. The 
cases y = O  and y = O S  are shown by the full and broken curves, respectively. On the 
horizontal axis the scattering angle (in degrees) is presented. 

0 i 0.5 1.0 1p 1 5  2.0 

Figure 13. The same as in figure 12 but for p =91 cm. 

5. Discussion 

We emphasise the urgent necessity of the quantitative verification of the AB effect 
(which sometimes is defined as observable consequences of the hidden fields). In  the 
physical literature there exist few alternative interpretations of the observed diffraction 
pattern shift (see e.g. [26-291 and  particularly an  exciting discussion ( p  307) after the 
Pozzi and  Matteucci report ( p  297) in [30]). These explanations are of the pure 
qualitative nature. Because of this, the experimental confirmation of the theoretically 
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p = 97.94 1 

t 

1.5 - 

0.5. 

f . . . . l . ~ . . i . . . , l . . . ~ l . ~ . , ,  
0 0 5  1.0 15 2 .o 

'p 

Figure 14. The same as in  figure 12 but for p =98 cm. 

1 5 i  1 0  

5213 

Figure 15. The positions and lalues of the 
shown by the full vertical lines. Only those maxima are presented which exceed 1. 

maxima. The cases y = 0 and y = 0.5 are 
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computed diffraction pattern shifts will be a decisive argument in favour of the physical 
meaning of the vector potential. It would be highly improbable if two different 
mechanisms give the same quantiative shift of the diffraction pattern. In our opinion 
the following experiments may remove doubts as to the existence of the A B  effect 
occurring in the physical literature. 

(1) Experiments with electron scattering on cylindrical and toroidal solenoids with 
configurations of the incident wavevector and detectors shown in figures 3-5. The 
Fresnel electrostatic biprisms being used, the detectors D, D ,  and D2 should register 
particles in the absence of the magnetic field even for very large values of kR and kd. 
For y = i  the counting rate of D and D, drops to zero while that of D2 remains 
practically the same. Being very specific, this effect probably could not be obtained 
in the above mentioned alternative interpretations of the A B  effect. 

(2) Electron scattering on two cyclindrical solenoids with opposite magnetic fluxes 
for the configurations shown in figure 11. The numerical studies of section 4 show 
that the best place for the detector is the region of small angles. The formulae (see 
section 4.4) describing the cross sections quantitatively both in the presence and absence 
of the magnetic field show that this experiment can be realised within the existing 
facilities. 

(3) Electron scattering on a toroidal solenoid. The Fraunhofer diffraction theory 
describes these experiments only qualitatively (see section 4.4). Let us estimate at what 
distance from the solenoid the measuring device should be installed in order for the 
Fraunhofer theory to be applicable. I t  works if the parameter w = kdR/r<<  T. If we 
decree w equal to 0.1 to be small enough while for k, d and R take the same values 
as in the experiments of Tonomura et a1 ( k  = 2  x 10” cm-’, R = cm, d = 4 x  

cm), then r = 80 m. Clearly these dimensions of the experimental installation are 
unacceptable. We have mentioned earlier that it is the Fresnel diffraction that describes 
adequately the electron scattering in the experiments of Tonomura et al. Unfortunately, 
we have not up to now succeeded in otabining the Fresnel cross sections in a closed form. 

6. Conclusion 

We summarise briefly the main results obtained. 
(1) Using Fraunhofer diffraction theory we investigated the electron scattering on 

two solenoids with opposite magnetic fluxes and on the toroidal solenoid. The diffrac- 
tion patterns are obtained in both the presence and absence of the magnetic field. 
Explicit values are obtained for the magnetic field shift of the diffraction pattern. 

(2) The experiment suggested earlier [15] testing the existence of the A B  effect is 
investigated numerically. I t  is shown that it can indeed be realised within the existing 
experimental facilities. 

( 3 )  We demonstrate that electron scattering on two cylinders with 4, = -& and 
on the toroidal solenoid for realistic dimensions of the experimental installation is 
described adequately by the Fresnel diffraction theory. For two solenoids the cross 
sections are obtained in a closed form. The complications arising in the interpretation 
of the observed cross sections are discussed and the practical recommendations for 
the performance of experiments are given. 

After submission of this paper we obtained (Afanasiev G N 1989 JINR Preprint 
P4-89-357, Dubna ) the Fresnel wavefunction for the electron scattering on the toroidal 
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solenoid (see figure 2). It looks as follows ( r  and 0 are the usual spherical coordinates): 

I,!I = exp(ikz) + I,!I, 

[ ( (d  l rR)2)  w, -exp(2irry) exp 
1 

@ , = - ( l + c o s  e)  exp(ikz) exp ik 
2 

Functions W, and W2 are expressed through the well known Lommel functions 
U ,  and U, (see any treatise on the Bessel functions) 

k ( D *  R )  sin 6) -iU2( k ( d  * 
r 

k(d * R )  sin 8). 

On the Z axis / $ I 2  is simplified: 

The / $ I 2  maxima for y = are well separated from those for y = 0. Thus, the measure- 
ment of the particle flux along the 2 axis is realisable in practice. Using the properties 
of the Lommel functions one obtains for ( d  + R ) /  r sin 6 << 1 

u;=u;+ (':iri - ' ) > ( d ' - R ' ~ ~ , [ k ( d + R ) s i n  e] 

x J [ k ( d  - R )  sin 61 s in?(w-ry)  ( w  = kdR/r).  

Here u; is defined by (2.10). This cross section differs from the Fraunhofer one (3.18) 
by the sine argument in the last term. This leads to ambiguities similar to those of 
two solenoids with 4, = -4,  (see section 4.4). It seems that the expressions presented 
describe adequately the experiments of Tonomura er a1 for the toroidal solenoid. 
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